
6Artificial neural networks

In which we consider how our brains work and how to build and train

artificial neural networks.

6.1 Introduction, or how the brain works

‘The computer hasn’t proved anything yet,’ angry Garry Kasparov, the world

chess champion, said after his defeat in New York in May 1997. ‘If we were

playing a real competitive match, I would tear down Deep Blue into pieces.’

But Kasparov’s efforts to downplay the significance of his defeat in the six-

game match was futile. The fact that Kasparov – probably the greatest chess

player the world has seen – was beaten by a computer marked a turning point in

the quest for intelligent machines.

The IBM supercomputer called Deep Blue was capable of analysing 200

million positions a second, and it appeared to be displaying intelligent thoughts.

At one stage Kasparov even accused the machine of cheating!

‘There were many, many discoveries in this match, and one of them was

that sometimes the computer plays very, very human moves.

It deeply understands positional factors. And that is an outstanding

scientific achievement.’

Traditionally, it has been assumed that to beat an expert in a chess game, a

computer would have to formulate a strategy that goes beyond simply doing

a great number of ‘look-ahead’ moves per second. Chess-playing programs must

be able to improve their performance with experience or, in other words, a

machine must be capable of learning.

What is machine learning?

In general, machine learning involves adaptive mechanisms that enable com-

puters to learn from experience, learn by example and learn by analogy.

Learning capabilities can improve the performance of an intelligent system over

time. Machine learning mechanisms form the basis for adaptive systems. The

most popular approaches to machine learning are artificial neural networks

and genetic algorithms. This chapter is dedicated to neural networks.

What is a neural network?

A neural network can be defined as a model of reasoning based on the human

brain. The brain consists of a densely interconnected set of nerve cells, or basic

information-processing units, called neurons. The human brain incorporates

nearly 10 billion neurons and 60 trillion connections, synapses, between them

(Shepherd and Koch, 1990). By using multiple neurons simultaneously, the

brain can perform its functions much faster than the fastest computers in

existence today.

Although each neuron has a very simple structure, an army of such elements

constitutes a tremendous processing power. A neuron consists of a cell body,

soma, a number of fibres called dendrites, and a single long fibre called the

axon. While dendrites branch into a network around the soma, the axon

stretches out to the dendrites and somas of other neurons. Figure 6.1 is a

schematic drawing of a neural network.

Signals are propagated from one neuron to another by complex electro-

chemical reactions. Chemical substances released from the synapses cause a

change in the electrical potential of the cell body. When the potential reaches its

threshold, an electrical pulse, action potential, is sent down through the axon.

The pulse spreads out and eventually reaches synapses, causing them to increase

or decrease their potential. However, the most interesting finding is that a neural

network exhibits plasticity. In response to the stimulation pattern, neurons

demonstrate long-term changes in the strength of their connections. Neurons

also can form new connections with other neurons. Even entire collections of

neurons may sometimes migrate from one place to another. These mechanisms

form the basis for learning in the brain.

Our brain can be considered as a highly complex, nonlinear and parallel

information-processing system. Information is stored and processed in a neural

network simultaneously throughout the whole network, rather than at specific

locations. In other words, in neural networks, both data and its processing are

global rather than local.

Owing to the plasticity, connections between neurons leading to the ‘right

answer’ are strengthened while those leading to the ‘wrong answer’ weaken. As a

result, neural networks have the ability to learn through experience.

Learning is a fundamental and essential characteristic of biological neural

networks. The ease and naturalness with which they can learn led to attempts to

emulate a biological neural network in a computer.

Figure 6.1 Biological neural network

ARTIFICIAL NEURAL NETWORKS166

Although a present-day artificial neural network (ANN) resembles the human

brain much as a paper plane resembles a supersonic jet, it is a big step forward.

ANNs are capable of ‘learning’, that is, they use experience to improve their

performance. When exposed to a sufficient number of samples, ANNs can

generalise to others they have not yet encountered. They can recognise hand-

written characters, identify words in human speech, and detect explosives

at airports. Moreover, ANNs can observe patterns that human experts fail

to recognise. For example, Chase Manhattan Bank used a neural network to

examine an array of information about the use of stolen credit cards – and

discovered that the most suspicious sales were for women’s shoes costing

between $40 and $80.

How do artificial neural nets model the brain?

An artificial neural network consists of a number of very simple and highly

interconnected processors, also called neurons, which are analogous to the

biological neurons in the brain. The neurons are connected by weighted links

passing signals from one neuron to another. Each neuron receives a number of

input signals through its connections; however, it never produces more than a

single output signal. The output signal is transmitted through the neuron’s

outgoing connection (corresponding to the biological axon). The outgoing

connection, in turn, splits into a number of branches that transmit the same

signal (the signal is not divided among these branches in any way). The outgoing

branches terminate at the incoming connections of other neurons in the

network. Figure 6.2 represents connections of a typical ANN, and Table 6.1

shows the analogy between biological and artificial neural networks (Medsker

and Liebowitz, 1994).

How does an artificial neural network ‘learn’?

The neurons are connected by links, and each link has a numerical weight

associated with it. Weights are the basic means of long-term memory in ANNs.

They express the strength, or in other words importance, of each neuron input.

A neural network ‘learns’ through repeated adjustments of these weights.

Figure 6.2 Architecture of a typical artificial neural network

INTRODUCTION, OR HOW THE BRAIN WORKS 167

But does the neural network know how to adjust the weights?

As shown in Figure 6.2, a typical ANN is made up of a hierarchy of layers, and the

neurons in the networks are arranged along these layers. The neurons connected

to the external environment form input and output layers. The weights are

modified to bring the network input/output behaviour into line with that of the

environment.

Each neuron is an elementary information-processing unit. It has a means of

computing its activation level given the inputs and numerical weights.

To build an artificial neural network, we must decide first how many neurons

are to be used and how the neurons are to be connected to form a network. In

other words, we must first choose the network architecture. Then we decide

which learning algorithm to use. And finally we train the neural network, that is,

we initialise the weights of the network and update the weights from a set of

training examples.

Let us begin with a neuron, the basic building element of an ANN.

6.2 The neuron as a simple computing element

A neuron receives several signals from its input links, computes a new activation

level and sends it as an output signal through the output links. The input signal

can be raw data or outputs of other neurons. The output signal can be either a

final solution to the problem or an input to other neurons. Figure 6.3 shows

a typical neuron.

Figure 6.3 Diagram of a neuron

Table 6.1 Analogy between biological and artificial neural networks

Biological neural network Artificial neural network

Soma Neuron

Dendrite Input

Axon Output

Synapse Weight

ARTIFICIAL NEURAL NETWORKS168

How does the neuron determine its output?

In 1943, Warren McCulloch and Walter Pitts proposed a very simple idea that is

still the basis for most artificial neural networks.

The neuron computes the weighted sum of the input signals and compares

the result with a threshold value, �. If the net input is less than the threshold, the

neuron output is �1. But if the net input is greater than or equal to the

threshold, the neuron becomes activated and its output attains a value þ1

(McCulloch and Pitts, 1943).

In other words, the neuron uses the following transfer or activation function:

X ¼
Xn

i¼1

xiwi ð6:1Þ

Y ¼ þ1 if X5 �

�1 if X < �

�

where X is the net weighted input to the neuron, xi is the value of input i, wi is

the weight of input i, n is the number of neuron inputs, and Y is the output

of the neuron.

This type of activation function is called a sign function.

Thus the actual output of the neuron with a sign activation function can be

represented as

Y ¼ sign
Xn

i¼1

xiwi � �

" #
ð6:2Þ

Is the sign function the only activation function used by neurons?

Many activation functions have been tested, but only a few have found practical

applications. Four common choices – the step, sign, linear and sigmoid functions –

are illustrated in Figure 6.4.

The step and sign activation functions, also called hard limit functions, are

often used in decision-making neurons for classification and pattern recognition

tasks.

Figure 6.4 Activation functions of a neuron

169THE NEURON AS A SIMPLE COMPUTING ELEMENT

The sigmoid function transforms the input, which can have any value

between plus and minus infinity, into a reasonable value in the range between

0 and 1. Neurons with this function are used in the back-propagation networks.

The linear activation function provides an output equal to the neuron

weighted input. Neurons with the linear function are often used for linear

approximation.

Can a single neuron learn a task?

In 1958, Frank Rosenblatt introduced a training algorithm that provided the first

procedure for training a simple ANN: a perceptron (Rosenblatt, 1958). The

perceptron is the simplest form of a neural network. It consists of a single neuron

with adjustable synaptic weights and a hard limiter. A single-layer two-input

perceptron is shown in Figure 6.5.

6.3 The perceptron

The operation of Rosenblatt’s perceptron is based on the McCulloch and Pitts

neuron model. The model consists of a linear combiner followed by a hard

limiter. The weighted sum of the inputs is applied to the hard limiter, which

produces an output equal to þ1 if its input is positive and �1 if it is negative. The

aim of the perceptron is to classify inputs, or in other words externally applied

stimuli x1; x2; . . . ; xn, into one of two classes, say A1 and A2. Thus, in the case of

an elementary perceptron, the n-dimensional space is divided by a hyperplane

into two decision regions. The hyperplane is defined by the linearly separable

function

Xn

i¼1

xiwi � � ¼ 0 ð6:3Þ

For the case of two inputs, x1 and x2, the decision boundary takes the form of

a straight line shown in bold in Figure 6.6(a). Point 1, which lies above the

boundary line, belongs to class A1; and point 2, which lies below the line,

belongs to class A2. The threshold � can be used to shift the decision boundary.

Figure 6.5 Single-layer two-input perceptron

ARTIFICIAL NEURAL NETWORKS170

With three inputs the hyperplane can still be visualised. Figure 6.6(b) shows

three dimensions for the three-input perceptron. The separating plane here is

defined by the equation

x1w1 þ x2w2 þ x3w3 � � ¼ 0

But how does the perceptron learn its classification tasks?

This is done by making small adjustments in the weights to reduce the difference

between the actual and desired outputs of the perceptron. The initial weights are

randomly assigned, usually in the range ½�0:5; 0:5�, and then updated to obtain

the output consistent with the training examples. For a perceptron, the process

of weight updating is particularly simple. If at iteration p, the actual output is

YðpÞ and the desired output is YdðpÞ, then the error is given by

eðpÞ ¼ YdðpÞ � YðpÞ where p ¼ 1;2;3; . . . ð6:4Þ

Iteration p here refers to the pth training example presented to the perceptron.

If the error, eðpÞ, is positive, we need to increase perceptron output YðpÞ, but if

it is negative, we need to decrease YðpÞ. Taking into account that each

perceptron input contributes xiðpÞ � wiðpÞ to the total input XðpÞ, we find that

if input value xiðpÞ is positive, an increase in its weight wiðpÞ tends to increase

perceptron output YðpÞ, whereas if xiðpÞ is negative, an increase in wiðpÞ tends to

decrease YðpÞ. Thus, the following perceptron learning rule can be established:

wiðp þ 1Þ ¼ wiðpÞ þ �� xiðpÞ � eðpÞ; ð6:5Þ

where � is the learning rate, a positive constant less than unity.

The perceptron learning rule was first proposed by Rosenblatt in 1960

(Rosenblatt, 1960). Using this rule we can derive the perceptron training

algorithm for classification tasks.

Figure 6.6 Linear separability in the perceptrons: (a) two-input perceptron;

(b) three-input perceptron

171THE PERCEPTRON

Step 1: Initialisation

Set initial weights w1;w2; . . . ;wn and threshold � to random numbers in

the range ½�0:5;0:5�.

Step 2: Activation

Activate the perceptron by applying inputs x1ðpÞ; x2ðpÞ; . . . ; xnðpÞ and

desired output YdðpÞ. Calculate the actual output at iteration p ¼ 1

YðpÞ ¼ step
Xn

i¼1

xiðpÞwiðpÞ � �

" #
; ð6:6Þ

where n is the number of the perceptron inputs, and step is a step

activation function.

Step 3: Weight training

Update the weights of the perceptron

wiðp þ 1Þ ¼ wiðpÞ þ�wiðpÞ; ð6:7Þ

where �wiðpÞ is the weight correction at iteration p.

The weight correction is computed by the delta rule:

�wiðpÞ ¼ �� xiðpÞ � eðpÞ ð6:8Þ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process

until convergence.

Can we train a perceptron to perform basic logical operations such as

AND, OR or Exclusive-OR?

The truth tables for the operations AND, OR and Exclusive-OR are shown in

Table 6.2. The table presents all possible combinations of values for two

variables, x1 and x2, and the results of the operations. The perceptron must be

trained to classify the input patterns.

Let us first consider the operation AND. After completing the initialisation

step, the perceptron is activated by the sequence of four input patterns

representing an epoch. The perceptron weights are updated after each activa-

tion. This process is repeated until all the weights converge to a uniform set of

values. The results are shown in Table 6.3.

Table 6.2 Truth tables for the basic logical operations

Input variables AND OR Exclusive-OR

x1 x2 x1 \ x2 x1 [x2 x1 � x2

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

ARTIFICIAL NEURAL NETWORKS172

In a similar manner, the perceptron can learn the operation OR. However, a

single-layer perceptron cannot be trained to perform the operation Exclusive-OR.

A little geometry can help us to understand why this is. Figure 6.7 represents

the AND, OR and Exclusive-OR functions as two-dimensional plots based on the

values of the two inputs. Points in the input space where the function output is 1

are indicated by black dots, and points where the output is 0 are indicated by

white dots.

Table 6.3 Example of perceptron learning: the logical operation AND

Inputs
Desired

output

Initial

weights
Actual

output Error

Final

weights

Epoch x1 x2 Yd w1 w2 Y e w1 w2

1 0 0 0 0.3 �0.1 0 0 0.3 �0.1

0 1 0 0.3 �0.1 0 0 0.3 �0.1

1 0 0 0.3 �0.1 1 �1 0.2 �0.1

1 1 1 0.2 �0.1 0 1 0.3 0.0

2 0 0 0 0.3 0.0 0 0 0.3 0.0

0 1 0 0.3 0.0 0 0 0.3 0.0

1 0 0 0.3 0.0 1 �1 0.2 0.0

1 1 1 0.2 0.0 1 0 0.2 0.0

3 0 0 0 0.2 0.0 0 0 0.2 0.0

0 1 0 0.2 0.0 0 0 0.2 0.0

1 0 0 0.2 0.0 1 �1 0.1 0.0

1 1 1 0.1 0.0 0 1 0.2 0.1

4 0 0 0 0.2 0.1 0 0 0.2 0.1

0 1 0 0.2 0.1 0 0 0.2 0.1

1 0 0 0.2 0.1 1 �1 0.1 0.1

1 1 1 0.1 0.1 1 0 0.1 0.1

5 0 0 0 0.1 0.1 0 0 0.1 0.1

0 1 0 0.1 0.1 0 0 0.1 0.1

1 0 0 0.1 0.1 0 0 0.1 0.1

1 1 1 0.1 0.1 1 0 0.1 0.1

Threshold: � ¼ 0:2; learning rate: � ¼ 0:1.

Figure 6.7 Two-dimensional plots of basic logical operations

173THE PERCEPTRON

In Figures 6.7(a) and (b), we can draw a line so that black dots are on one side

and white dots on the other, but dots shown in Figure 6.7(c) are not separable by

a single line. A perceptron is able to represent a function only if there is some

line that separates all the black dots from all the white dots. Such functions are

called linearly separable. Therefore, a perceptron can learn the operations AND

and OR, but not Exclusive-OR.

But why can a perceptron learn only linearly separable functions?

The fact that a perceptron can learn only linearly separable functions directly

follows from Eq. (6.1). The perceptron output Y is 1 only if the total weighted

input X is greater than or equal to the threshold value �. This means that the

entire input space is divided in two along a boundary defined by X ¼ �. For

example, a separating line for the operation AND is defined by the equation

x1w1 þ x2w2 ¼ �

If we substitute values for weights w1 and w2 and threshold � given in Table 6.3,

we obtain one of the possible separating lines as

0:1x1 þ 0:1x2 ¼ 0:2

or

x1 þ x2 ¼ 2

Thus, the region below the boundary line, where the output is 0, is given by

x1 þ x2 � 2 < 0;

and the region above this line, where the output is 1, is given by

x1 þ x2 � 250

The fact that a perceptron can learn only linear separable functions is rather

bad news, because there are not many such functions.

Can we do better by using a sigmoidal or linear element in place of the

hard limiter?

Single-layer perceptrons make decisions in the same way, regardless of the activa-

tion function used by the perceptron (Shynk, 1990; Shynk and Bershad, 1992). It

means that a single-layer perceptron can classify only linearly separable patterns,

regardless of whether we use a hard-limit or soft-limit activation function.

The computational limitations of a perceptron were mathematically analysed

in Minsky and Papert’s famous book Perceptrons (Minsky and Papert, 1969). They

proved that Rosenblatt’s perceptron cannot make global generalisations on the

basis of examples learned locally. Moreover, Minsky and Papert concluded that

ARTIFICIAL NEURAL NETWORKS174

the limitations of a single-layer perceptron would also hold true for multilayer

neural networks. This conclusion certainly did not encourage further research on

artificial neural networks.

How do we cope with problems which are not linearly separable?

To cope with such problems we need multilayer neural networks. In fact, history

has proved that the limitations of Rosenblatt’s perceptron can be overcome by

advanced forms of neural networks, for example multilayer perceptrons trained

with the back-propagation algorithm.

6.4 Multilayer neural networks

A multilayer perceptron is a feedforward neural network with one or more

hidden layers. Typically, the network consists of an input layer of source

neurons, at least one middle or hidden layer of computational neurons, and

an output layer of computational neurons. The input signals are propagated in a

forward direction on a layer-by-layer basis. A multilayer perceptron with two

hidden layers is shown in Figure 6.8.

But why do we need a hidden layer?

Each layer in a multilayer neural network has its own specific function. The

input layer accepts input signals from the outside world and redistributes these

signals to all neurons in the hidden layer. Actually, the input layer rarely

includes computing neurons, and thus does not process input patterns. The

output layer accepts output signals, or in other words a stimulus pattern, from

the hidden layer and establishes the output pattern of the entire network.

Neurons in the hidden layer detect the features; the weights of the neurons

represent the features hidden in the input patterns. These features are then used

by the output layer in determining the output pattern.

With one hidden layer, we can represent any continuous function of the

input signals, and with two hidden layers even discontinuous functions can be

represented.

Figure 6.8 Multilayer perceptron with two hidden layers

175MULTILAYER NEURAL NETWORKS

Why is a middle layer in a multilayer network called a ‘hidden’ layer?

What does this layer hide?

A hidden layer ‘hides’ its desired output. Neurons in the hidden layer cannot be

observed through the input/output behaviour of the network. There is no obvious

way to know what the desired output of the hidden layer should be. In other

words, the desired output of the hidden layer is determined by the layer itself.

Can a neural network include more than two hidden layers?

Commercial ANNs incorporate three and sometimes four layers, including one

or two hidden layers. Each layer can contain from 10 to 1000 neurons.

Experimental neural networks may have five or even six layers, including three

or four hidden layers, and utilise millions of neurons, but most practical

applications use only three layers, because each additional layer increases the

computational burden exponentially.

How do multilayer neural networks learn?

More than a hundred different learning algorithms are available, but the

most popular method is back-propagation. This method was first proposed in

1969 (Bryson and Ho, 1969), but was ignored because of its demanding com-

putations. Only in the mid-1980s was the back-propagation learning algorithm

rediscovered.

Learning in a multilayer network proceeds the same way as for a perceptron. A

training set of input patterns is presented to the network. The network computes

its output pattern, and if there is an error – or in other words a difference

between actual and desired output patterns – the weights are adjusted to reduce

this error.

In a perceptron, there is only one weight for each input and only one output.

But in the multilayer network, there are many weights, each of which contrib-

utes to more than one output.

How can we assess the blame for an error and divide it among the

contributing weights?

In a back-propagation neural network, the learning algorithm has two phases.

First, a training input pattern is presented to the network input layer. The

network then propagates the input pattern from layer to layer until the output

pattern is generated by the output layer. If this pattern is different from the

desired output, an error is calculated and then propagated backwards through

the network from the output layer to the input layer. The weights are modified

as the error is propagated.

As with any other neural network, a back-propagation one is determined by

the connections between neurons (the network’s architecture), the activation

function used by the neurons, and the learning algorithm (or the learning law)

that specifies the procedure for adjusting weights.

Typically, a back-propagation network is a multilayer network that has three

or four layers. The layers are fully connected, that is, every neuron in each layer

is connected to every other neuron in the adjacent forward layer.

ARTIFICIAL NEURAL NETWORKS176

A neuron determines its output in a manner similar to Rosenblatt’s percep-

tron. First, it computes the net weighted input as before:

X ¼
Xn

i¼1

xiwi � �;

where n is the number of inputs, and � is the threshold applied to the neuron.

Next, this input value is passed through the activation function. However,

unlike a percepron, neurons in the back-propagation network use a sigmoid

activation function:

Ysigmoid ¼ 1

1 þ e�X
ð6:9Þ

The derivative of this function is easy to compute. It also guarantees that the

neuron output is bounded between 0 and 1.

What about the learning law used in the back-propagation networks?

To derive the back-propagation learning law, let us consider the three-layer

network shown in Figure 6.9. The indices i, j and k here refer to neurons in the

input, hidden and output layers, respectively.

Input signals, x1; x2; . . . ; xn, are propagated through the network from left to

right, and error signals, e1; e2; . . . ; el, from right to left. The symbol wij denotes the

weight for the connection between neuron i in the input layer and neuron j in

the hidden layer, and the symbol wjk the weight between neuron j in the hidden

layer and neuron k in the output layer.

Figure 6.9 Three-layer back-propagation neural network

177MULTILAYER NEURAL NETWORKS

To propagate error signals, we start at the output layer and work backward to

the hidden layer. The error signal at the output of neuron k at iteration p is

defined by

ekðpÞ ¼ yd;kðpÞ � ykðpÞ; ð6:10Þ

where yd;kðpÞ is the desired output of neuron k at iteration p.

Neuron k, which is located in the output layer, is supplied with a desired

output of its own. Hence, we may use a straightforward procedure to update

weight wjk. In fact, the rule for updating weights at the output layer is similar to

the perceptron learning rule of Eq. (6.7):

wjkðp þ 1Þ ¼ wjkðpÞ þ�wjkðpÞ; ð6:11Þ

where �wjkðpÞ is the weight correction.

When we determined the weight correction for the perceptron, we used input

signal xi. But in the multilayer network, the inputs of neurons in the output layer

are different from the inputs of neurons in the input layer.

As we cannot apply input signal xi , what should we use instead?

We use the output of neuron j in the hidden layer, yj, instead of input xi. The

weight correction in the multilayer network is computed by (Fu, 1994):

�wjkðpÞ ¼ �� yjðpÞ � �kðpÞ; ð6:12Þ

where �kðpÞ is the error gradient at neuron k in the output layer at iteration p.

What is the error gradient?

The error gradient is determined as the derivative of the activation function

multiplied by the error at the neuron output.

Thus, for neuron k in the output layer, we have

�kðpÞ ¼ @ykðpÞ
@XkðpÞ � ekðpÞ; ð6:13Þ

where ykðpÞ is the output of neuron k at iteration p, and XkðpÞ is the net weighted

input to neuron k at the same iteration.

For a sigmoid activation function, Eq. (6.13) can be represented as

�kðpÞ ¼
@

(
1

1 þ exp½�XkðpÞ�

)

@XkðpÞ
� ekðpÞ ¼

exp½�XkðpÞ�
f1 þ exp½�XkðpÞ�g2

� ekðpÞ

Thus, we obtain:

ARTIFICIAL NEURAL NETWORKS178

�kðpÞ ¼ ykðpÞ � ½1 � ykðpÞ� � ekðpÞ; ð6:14Þ

where

ykðpÞ ¼ 1

1 þ exp½�XkðpÞ�
:

How can we determine the weight correction for a neuron in the hidden

layer?

To calculate the weight correction for the hidden layer, we can apply the same

equation as for the output layer:

�wijðpÞ ¼ �� xiðpÞ � �jðpÞ; ð6:15Þ

where �jðpÞ represents the error gradient at neuron j in the hidden layer:

�jðpÞ ¼ yjðpÞ � ½1 � yjðpÞ� �
Xl

k¼1

�kðpÞwjkðpÞ;

where l is the number of neurons in the output layer;

yjðpÞ ¼ 1

1 þ e�Xjð pÞ ;

XjðpÞ ¼
Xn

i¼1

xiðpÞ � wijðpÞ � �j;

and n is the number of neurons in the input layer.

Now we can derive the back-propagation training algorithm.

Step 1: Initialisation

Set all the weights and threshold levels of the network to random

numbers uniformly distributed inside a small range (Haykin, 1999):

� 2:4

Fi
;þ2:4

Fi

� �
;

where Fi is the total number of inputs of neuron i in the network. The

weight initialisation is done on a neuron-by-neuron basis.

Step 2: Activation

Activate the back-propagation neural network by applying inputs

x1ðpÞ; x2ðpÞ; . . . ; xnðpÞ and desired outputs yd;1ðpÞ; yd;2ðpÞ; . . . ; yd;nðpÞ.

(a) Calculate the actual outputs of the neurons in the hidden layer:

yjðpÞ ¼ sigmoid
Xn

i¼1

xiðpÞ � wijðpÞ � �j

" #
;

where n is the number of inputs of neuron j in the hidden layer,

and sigmoid is the sigmoid activation function.

179MULTILAYER NEURAL NETWORKS

(b) Calculate the actual outputs of the neurons in the output layer:

ykðpÞ ¼ sigmoid
Xm
j¼1

xjkðpÞ � wjkðpÞ � �k

2
4

3
5;

where m is the number of inputs of neuron k in the output layer.

Step 3: Weight training

Update the weights in the back-propagation network propagating

backward the errors associated with output neurons.

(a) Calculate the error gradient for the neurons in the output layer:

�kðpÞ ¼ ykðpÞ � ½1 � ykðpÞ� � ekðpÞ

where

ekðpÞ ¼ yd;kðpÞ � ykðpÞ

Calculate the weight corrections:

�wjkðpÞ ¼ �� yjðpÞ � �kðpÞ

Update the weights at the output neurons:

wjkðp þ 1Þ ¼ wjkðpÞ þ�wjkðpÞ

(b) Calculate the error gradient for the neurons in the hidden layer:

�jðpÞ ¼ yjðpÞ � ½1 � yjðpÞ� �
Xl

k¼1

�kðpÞ � wjkðpÞ

Calculate the weight corrections:

�wijðpÞ ¼ �� xiðpÞ � �jðpÞ

Update the weights at the hidden neurons:

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process

until the selected error criterion is satisfied.

As an example, we may consider the three-layer back-propagation network

shown in Figure 6.10. Suppose that the network is required to perform logical

operation Exclusive-OR. Recall that a single-layer perceptron could not do

this operation. Now we will apply the three-layer net.

Neurons 1 and 2 in the input layer accept inputs x1 and x2, respectively, and

redistribute these inputs to the neurons in the hidden layer without any

processing:

x13 ¼ x14 ¼ x1 and x23 ¼ x24 ¼ x2.

ARTIFICIAL NEURAL NETWORKS180

The effect of the threshold applied to a neuron in the hidden or output layer

is represented by its weight, �, connected to a fixed input equal to �1.

The initial weights and threshold levels are set randomly as follows:

w13 ¼ 0:5, w14 ¼ 0:9, w23 ¼ 0:4, w24 ¼ 1:0, w35 ¼ �1:2, w45 ¼ 1:1,

�3 ¼ 0:8, �4 ¼ �0:1 and �5 ¼ 0:3.

Consider a training set where inputs x1 and x2 are equal to 1 and desired

output yd;5 is 0. The actual outputs of neurons 3 and 4 in the hidden layer are

calculated as

y3 ¼ sigmoid ðx1w13 þ x2w23 � �3Þ ¼ 1=½1 þ e�ð1�0:5þ1�0:4�1�0:8Þ� ¼ 0:5250

y4 ¼ sigmoid ðx1w14 þ x2w24 � �4Þ ¼ 1=½1 þ e�ð1�0:9þ1�1:0þ1�0:1Þ� ¼ 0:8808

Now the actual output of neuron 5 in the output layer is determined as

y5 ¼ sigmoid ðy3w35 þ y4w45 � �5Þ ¼ 1=½1þ e�ð�0:5250�1:2þ0:8808�1:1�1�0:3Þ� ¼ 0:5097

Thus, the following error is obtained:

e ¼ yd;5 � y5 ¼ 0 � 0:5097 ¼ �0:5097

The next step is weight training. To update the weights and threshold levels

in our network, we propagate the error, e, from the output layer backward to the

input layer.

First, we calculate the error gradient for neuron 5 in the output layer:

�5 ¼ y5ð1 � y5Þe ¼ 0:5097 � ð1 � 0:5097Þ � ð�0:5097Þ ¼ �0:1274

Figure 6.10 Three-layer network for solving the Exclusive-OR operation

181MULTILAYER NEURAL NETWORKS

Then we determine the weight corrections assuming that the learning rate

parameter, �, is equal to 0.1:

�w35 ¼ �� y3 � �5 ¼ 0:1 � 0:5250 � ð�0:1274Þ ¼ �0:0067

�w45 ¼ �� y4 � �5 ¼ 0:1 � 0:8808 � ð�0:1274Þ ¼ �0:0112

��5 ¼ �� ð�1Þ � �5 ¼ 0:1 � ð�1Þ � ð�0:1274Þ ¼ 0:0127

Next we calculate the error gradients for neurons 3 and 4 in the hidden layer:

�3 ¼ y3ð1�y3Þ� �5 �w35 ¼ 0:5250�ð1�0:5250Þ� ð�0:1274Þ� ð�1:2Þ ¼ 0:0381

�4 ¼ y4ð1�y4Þ� �5 �w45 ¼ 0:8808�ð1�0:8808Þ� ð�0:1274Þ�1:1¼�0:0147

We then determine the weight corrections:

�w13 ¼ �� x1 � �3 ¼ 0:1 � 1 � 0:0381 ¼ 0:0038

�w23 ¼ �� x2 � �3 ¼ 0:1 � 1 � 0:0381 ¼ 0:0038

��3 ¼ �� ð�1Þ � �3 ¼ 0:1 � ð�1Þ � 0:0381 ¼ �0:0038

�w14 ¼ �� x1 � �4 ¼ 0:1 � 1 � ð�0:0147Þ ¼ �0:0015

�w24 ¼ �� x2 � �4 ¼ 0:1 � 1 � ð�0:0147Þ ¼ �0:0015

��4 ¼ �� ð�1Þ � �4 ¼ 0:1 � ð�1Þ � ð�0:0147Þ ¼ 0:0015

At last, we update all weights and threshold levels in our network:

w13 ¼ w13 þ�w13 ¼ 0:5 þ 0:0038 ¼ 0:5038

w14 ¼ w14 þ�w14 ¼ 0:9 � 0:0015 ¼ 0:8985

w23 ¼ w23 þ�w23 ¼ 0:4 þ 0:0038 ¼ 0:4038

w24 ¼ w24 þ�w24 ¼ 1:0 � 0:0015 ¼ 0:9985

w35 ¼ w35 þ�w35 ¼ �1:2 � 0:0067 ¼ �1:2067

w45 ¼ w45 þ�w45 ¼ 1:1 � 0:0112 ¼ 1:0888

�3 ¼ �3 þ��3 ¼ 0:8 � 0:0038 ¼ 0:7962

�4 ¼ �4 þ��4 ¼ �0:1 þ 0:0015 ¼ �0:0985

�5 ¼ �5 þ��5 ¼ 0:3 þ 0:0127 ¼ 0:3127

The training process is repeated until the sum of squared errors is less than

0.001.

Why do we need to sum the squared errors?

The sum of the squared errors is a useful indicator of the network’s performance.

The back-propagation training algorithm attempts to minimise this criterion.

When the value of the sum of squared errors in an entire pass through all

ARTIFICIAL NEURAL NETWORKS182

training sets, or epoch, is sufficiently small, a network is considered to have

converged. In our example, the sufficiently small sum of squared errors is

defined as less than 0.001. Figure 6.11 represents a learning curve: the sum of

squared errors plotted versus the number of epochs used in training. The

learning curve shows how fast a network is learning.

It took 224 epochs or 896 iterations to train our network to perform the

Exclusive-OR operation. The following set of final weights and threshold levels

satisfied the chosen error criterion:

w13 ¼ 4:7621, w14 ¼ 6:3917, w23 ¼ 4:7618, w24 ¼ 6:3917, w35 ¼ �10:3788,

w45 ¼ 9:7691, �3 ¼ 7:3061, �4 ¼ 2:8441 and �5 ¼ 4:5589.

The network has solved the problem! We may now test our network by

presenting all training sets and calculating the network’s output. The results are

shown in Table 6.4.

Figure 6.11 Learning curve for operation Exclusive-OR

Table 6.4 Final results of three-layer network learning: the logical operation Exclusive-OR

Inputs
Desired

output

Actual

output Error

Sum of

squared

x1 x2 yd y5 e errors

1 1 0 0.0155 �0.0155 0.0010

0 1 1 0.9849 0.0151

1 0 1 0.9849 0.0151

0 0 0 0.0175 �0.0175

183MULTILAYER NEURAL NETWORKS

The initial weights and thresholds are set randomly. Does this mean that

the same network may find different solutions?

The network obtains different weights and threshold values when it starts from

different initial conditions. However, we will always solve the problem, although

using a different number of iterations. For instance, when the network was

trained again, we obtained the following solution:

w13 ¼ �6:3041, w14 ¼ �5:7896, w23 ¼ 6:2288, w24 ¼ 6:0088, w35 ¼ 9:6657,

w45 ¼ �9:4242, �3 ¼ 3:3858, �4 ¼ �2:8976 and �5 ¼ �4:4859.

Can we now draw decision boundaries constructed by the multilayer

network for operation Exclusive-OR?

It may be rather difficult to draw decision boundaries constructed by neurons

with a sigmoid activation function. However, we can represent each neuron in

the hidden and output layers by a McCulloch and Pitts model, using a sign

function. The network in Figure 6.12 is also trained to perform the Exclusive-OR

operation (Touretzky and Pomerlean, 1989; Haykin, 1999).

The positions of the decision boundaries constructed by neurons 3 and 4 in

the hidden layer are shown in Figure 6.13(a) and (b), respectively. Neuron 5

in the output layer performs a linear combination of the decision boundaries

formed by the two hidden neurons, as shown in Figure 6.13(c). The network in

Figure 6.12 does indeed separate black and white dots and thus solves the

Exclusive-OR problem.

Is back-propagation learning a good method for machine learning?

Although widely used, back-propagation learning is not immune from problems.

For example, the back-propagation learning algorithm does not seem to function

in the biological world (Stork, 1989). Biological neurons do not work backward

to adjust the strengths of their interconnections, synapses, and thus back-

propagation learning cannot be viewed as a process that emulates brain-like

learning.

Figure 6.12 Network represented by McCulloch–Pitts model for solving the Exclusive-OR

operation.

ARTIFICIAL NEURAL NETWORKS184

Another apparent problem is that the calculations are extensive and, as a

result, training is slow. In fact, a pure back-propagation algorithm is rarely used

in practical applications.

There are several possible ways to improve the computational efficiency of the

back-propagation algorithm (Caudill, 1991; Jacobs, 1988; Stubbs, 1990). Some of

them are discussed below.

6.5 Accelerated learning in multilayer neural networks

A multilayer network, in general, learns much faster when the sigmoidal

activation function is represented by a hyperbolic tangent,

Ytan h ¼ 2a

1 þ e�bX
� a; ð6:16Þ

where a and b are constants.

Suitable values for a and b are: a ¼ 1:716 and b ¼ 0:667 (Guyon, 1991).

We also can accelerate training by including a momentum term in the delta

rule of Eq. (6.12) (Rumelhart et al., 1986):

�wjkðpÞ ¼ 	 ��wjkðp � 1Þ þ �� yjðpÞ � �kðpÞ; ð6:17Þ

where 	 is a positive number ð04	 < 1Þ called the momentum constant.

Typically, the momentum constant is set to 0.95.

Equation (6.17) is called the generalised delta rule. In a special case, when

	 ¼ 0, we obtain the delta rule of Eq. (6.12).

Why do we need the momentum constant?

According to the observations made in Watrous (1987) and Jacobs (1988), the

inclusion of momentum in the back-propagation algorithm has a stabilising

effect on training. In other words, the inclusion of momentum tends to

Figure 6.13 (a) Decision boundary constructed by hidden neuron 3 of the network in

Figure 6.12; (b) decision boundary constructed by hidden neuron 4; (c) decision

boundaries constructed by the complete three-layer network

185ACCELERATED LEARNING IN MULTILAYER NEURAL NETWORKS

accelerate descent in the steady downhill direction, and to slow down the

process when the learning surface exhibits peaks and valleys.

Figure 6.14 represents learning with momentum for operation Exclusive-OR.

A comparison with a pure back-propagation algorithm shows that we reduced

the number of epochs from 224 to 126.

In the delta and generalised delta rules, we use a constant and rather

small value for the learning rate parameter, a. Can we increase this value

to speed up training?

One of the most effective means to accelerate the convergence of back-

propagation learning is to adjust the learning rate parameter during training.

The small learning rate parameter, �, causes small changes to the weights in the

network from one iteration to the next, and thus leads to the smooth learning

curve. On the other hand, if the learning rate parameter, �, is made larger to

speed up the training process, the resulting larger changes in the weights may

cause instability and, as a result, the network may become oscillatory.

To accelerate the convergence and yet avoid the danger of instability, we can

apply two heuristics (Jacobs, 1988):

. Heuristic 1. If the change of the sum of squared errors has the same algebraic

sign for several consequent epochs, then the learning rate parameter, �,

should be increased.

. Heuristic 2. If the algebraic sign of the change of the sum of squared errors

alternates for several consequent epochs, then the learning rate parameter, �,

should be decreased.

Figure 6.14 Learning with momentum

ARTIFICIAL NEURAL NETWORKS186

Adapting the learning rate requires some changes in the back-propagation

algorithm. First, the network outputs and errors are calculated from the initial

learning rate parameter. If the sum of squared errors at the current epoch exceeds

the previous value by more than a predefined ratio (typically 1.04), the learning

rate parameter is decreased (typically by multiplying by 0.7) and new weights

and thresholds are calculated. However, if the error is less than the previous one,

the learning rate is increased (typically by multiplying by 1.05).

Figure 6.15 represents an example of back-propagation training with adaptive

learning rate. It demonstrates that adapting the learning rate can indeed

decrease the number of iterations.

Learning rate adaptation can be used together with learning with momen-

tum. Figure 6.16 shows the benefits of applying simultaneously both techniques.

The use of momentum and adaptive learning rate significantly improves the

performance of a multilayer back-propagation neural network and minimises

the chance that the network can become oscillatory.

Neural networks were designed on an analogy with the brain. The brain’s

memory, however, works by association. For example, we can recognise a

familiar face even in an unfamiliar environment within 100–200 ms. We can

also recall a complete sensory experience, including sounds and scenes, when we

hear only a few bars of music. The brain routinely associates one thing with

another.

Figure 6.15 Learning with adaptive learning rate

187ACCELERATED LEARNING IN MULTILAYER NEURAL NETWORKS

Can a neural network simulate associative characteristics of the human

memory?

Multilayer neural networks trained with the back-propagation algorithm are

used for pattern recognition problems. But, as we noted, such networks are not

intrinsically intelligent. To emulate the human memory’s associative character-

istics we need a different type of network: a recurrent neural network.

6.6 The Hopfield network

A recurrent neural network has feedback loops from its outputs to its inputs. The

presence of such loops has a profound impact on the learning capability of the

network.

How does the recurrent network learn?

After applying a new input, the network output is calculated and fed back to

adjust the input. Then the output is calculated again, and the process is repeated

until the output becomes constant.

Does the output always become constant?

Successive iterations do not always produce smaller and smaller output changes,

but on the contrary may lead to chaotic behaviour. In such a case, the network

output never becomes constant, and the network is said to be unstable.

The stability of recurrent networks intrigued several researchers in the 1960s

and 1970s. However, none was able to predict which network would be stable,

Figure 6.16 Learning with momentum and adaptive learning rate

ARTIFICIAL NEURAL NETWORKS188

and some researchers were pessimistic about finding a solution at all. The problem

was solved only in 1982, when John Hopfield formulated the physical principle of

storing information in a dynamically stable network (Hopfield, 1982).

Figure 6.17 shows a single-layer Hopfield network consisting of n neurons.

The output of each neuron is fed back to the inputs of all other neurons (there is

no self-feedback in the Hopfield network).

The Hopfield network usually uses McCulloch and Pitts neurons with the sign

activation function as its computing element.

How does this function work here?

It works in a similar way to the sign function represented in Figure 6.4. If the

neuron’s weighted input is less than zero, the output is �1; if the input is greater

than zero, the output is þ1. However, if the neuron’s weighted input is exactly

zero, its output remains unchanged – in other words, a neuron remains in its

previous state, regardless of whether it is þ1 or �1.

Ysign ¼
þ1; if X > 0

�1; if X < 0

Y; if X ¼ 0

8><
>:

ð6:18Þ

The sign activation function may be replaced with a saturated linear

function, which acts as a pure linear function within the region ½�1; 1� and as

a sign function outside this region. The saturated linear function is shown in

Figure 6.18.

The current state of the network is determined by the current outputs of all

neurons, y1; y2; . . . ; yn. Thus, for a single-layer n-neuron network, the state can be

defined by the state vector as

Y ¼

y1

y2

..

.

yn

2
66664

3
77775

ð6:19Þ

Figure 6.17 Single-layer n-neuron Hopfield network

189THE HOPFIELD NETWORK

In the Hopfield network, synaptic weights between neurons are usually

represented in matrix form as follows:

W ¼
XM
m¼1

YmYT
m � MI; ð6:20Þ

where M is the number of states to be memorised by the network, Ym is the

n-dimensional binary vector, I is n � n identity matrix, and superscript T denotes

a matrix transposition.

An operation of the Hopfield network can be represented geometrically.

Figure 6.19 shows a three-neuron network represented as a cube in the three-

dimensional space. In general, a network with n neurons has 2n possible states

and is associated with an n-dimensional hypercube. In Figure 6.19, each state is

represented by a vertex. When a new input vector is applied, the network moves

from one state-vertex to another until it becomes stable.

Figure 6.18 The saturated linear activation function

Figure 6.19 Cube representation of the possible states for the three-neuron Hopfield

network

ARTIFICIAL NEURAL NETWORKS190

What determines a stable state-vertex?

The stable state-vertex is determined by the weight matrix W, the current input

vector X, and the threshold matrix �. If the input vector is partially incorrect or

incomplete, the initial state will converge into the stable state-vertex after a few

iterations.

Suppose, for instance, that our network is required to memorise two opposite

states, ð1;1;1Þ and ð�1;�1;�1Þ. Thus,

Y1 ¼
1

1

1

2
64

3
75 and Y2 ¼

�1

�1

�1

2
64

3
75;

where Y1 and Y2 are the three-dimensional vectors.

We also can represent these vectors in the row, or transposed, form

YT
1 ¼ 1 1 1½ � and YT

2 ¼ �1 �1 �1½ �

The 3 � 3 identity matrix I is

I ¼
1 0 0

0 1 0

0 0 1

2
64

3
75

Thus, we can now determine the weight matrix as follows:

W ¼ Y1YT
1 þ Y2YT

2 � 2I

or

W ¼
1

1

1

2
64

3
75 1 1 1½ � þ

�1

�1

�1

2
64

3
75 �1 �1 �1½ � � 2

1 0 0

0 1 0

0 0 1

2
64

3
75 ¼

0 2 2

2 0 2

2 2 0

2
64

3
75

Next, the network is tested by the sequence of input vectors, X1 and X2,

which are equal to the output (or target) vectors Y1 and Y2, respectively. We

want to see whether our network is capable of recognising familiar patterns.

How is the Hopfield network tested?

First, we activate it by applying the input vector X. Then, we calculate the

actual output vector Y, and finally, we compare the result with the initial input

vector X.

Ym ¼ sign ðW Xm � hÞ; m ¼ 1;2; . . . ;M ð6:21Þ

where h is the threshold matrix.

191THE HOPFIELD NETWORK

In our example, we may assume all thresholds to be zero. Thus,

Y1 ¼ sign

0 2 2

2 0 2

2 2 0

2
64

3
75

1

1

1

2
64

3
75�

0

0

0

2
64

3
75

8><
>:

9>=
>;

¼
1

1

1

2
64

3
75

and

Y2 ¼ sign

0 2 2

2 0 2

2 2 0

2
64

3
75

�1

�1

�1

2
64

3
75�

0

0

0

2
64

3
75

8><
>:

9>=
>;

¼
�1

�1

�1

2
64

3
75

As we see, Y1 ¼ X1 and Y2 ¼ X2. Thus, both states, ð1;1;1Þ and ð�1;�1;�1Þ, are

said to be stable.

How about other states?

With three neurons in the network, there are eight possible states. The remain-

ing six states are all unstable. However, stable states (also called fundamental

memories) are capable of attracting states that are close to them. As shown in

Table 6.5, the fundamental memory ð1;1; 1Þ attracts unstable states ð�1;1;1Þ,
ð1;�1;1Þ and ð1;1;�1Þ. Each of these unstable states represents a single

error, compared to the fundamental memory ð1;1;1Þ. On the other hand, the

Table 6.5 Operation of the three-neuron Hopfield network

Possible
Inputs Outputs

Fundamental

state Iteration x1 x2 x3 y1 y2 y3 memory

1 1 1 0 1 1 1 1 1 1 1 1 1

�1 1 1 0 �1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 �1 1 0 1 �1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 �1 0 1 1 �1 1 1 1

1 1 1 1 1 1 1 1 1 1

�1 �1 �1 0 �1 �1 �1 �1 �1 �1 �1 �1 �1

�1 �1 1 0 �1 �1 1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

�1 1 �1 0 �1 1 �1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

1 �1 �1 0 1 �1 �1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

ARTIFICIAL NEURAL NETWORKS192

fundamental memory ð�1;�1;�1Þ attracts unstable states ð�1;�1;1Þ, ð�1;1;�1Þ
and ð1;�1;�1Þ. Here again, each of the unstable states represents a single error,

compared to the fundamental memory. Thus, the Hopfield network can indeed

act as an error correction network. Let us now summarise the Hopfield network

training algorithm.

Step 1: Storage

The n-neuron Hopfield network is required to store a set of M funda-

mental memories, Y1;Y2; . . . ;YM . The synaptic weight from neuron i to

neuron j is calculated as

wij ¼
XM
m¼1

ym;i ym;j; i 6¼ j

0; i ¼ j

8><
>:

; ð6:22Þ

where ym;i and ym;j are the ith and the jth elements of the fundamental

memory Ym, respectively. In matrix form, the synaptic weights

between neurons are represented as

W ¼
XM
m¼1

YmYT
m � MI

The Hopfield network can store a set of fundamental memories if the

weight matrix is symmetrical, with zeros in its main diagonal (Cohen

and Grossberg, 1983). That is,

W ¼

0 w12 � � � w1i � � � w1n

w21 0 � � � w2i � � � w2n

..

. ..
. ..

. ..
.

wi1 wi2 � � � 0 � � � win

..

. ..
. ..

. ..
.

wn1 wn2 � � � wni � � � 0

2
66666666664

3
77777777775

; ð6:23Þ

where wij ¼ wji.

Once the weights are calculated, they remain fixed.

Step 2: Testing

We need to confirm that the Hopfield network is capable of recalling all

fundamental memories. In other words, the network must recall any

fundamental memory Ym when presented with it as an input. That is,

xm;i ¼ ym;i; i ¼ 1;2; . . . ;n; m ¼ 1;2; . . . ;M

ym;i ¼ sign
Xn

j¼1

wij xm;j � �i

0
@

1
A;

193THE HOPFIELD NETWORK

where ym;i is the ith element of the actual output vector Ym, and xm;j is

the jth element of the input vector Xm. In matrix form,

Xm ¼ Ym; m ¼ 1; 2; . . . ;M

Ym ¼ sign ðWXm � hÞ

If all fundamental memories are recalled perfectly we may proceed to

the next step.

Step 3: Retrieval

Present an unknown n-dimensional vector (probe), X, to the network

and retrieve a stable state. Typically, the probe represents a corrupted or

incomplete version of the fundamental memory, that is,

X 6¼ Ym; m ¼ 1;2; . . . ;M

(a) Initialise the retrieval algorithm of the Hopfield network by setting

xjð0Þ ¼ xj j ¼ 1;2; . . . ; n

and calculate the initial state for each neuron

yið0Þ ¼ sign
Xn

j¼1

wij xjð0Þ � �i

0
@

1
A; i ¼ 1;2; . . . ;n

where xjð0Þ is the jth element of the probe vector X at iteration

p ¼ 0, and yið0Þ is the state of neuron i at iteration p ¼ 0.

In matrix form, the state vector at iteration p ¼ 0 is presented as

Yð0Þ ¼ sign ½WXð0Þ � h �

(b) Update the elements of the state vector, YðpÞ, according to the

following rule:

yiðp þ 1Þ ¼ sign
Xn

j¼1

wij xjðpÞ � �i

0
@

1
A

Neurons for updating are selected asynchronously, that is,

randomly and one at a time.

Repeat the iteration until the state vector becomes unchanged,

or in other words, a stable state is achieved. The condition for

stability can be defined as:

yiðp þ 1Þ ¼ sign
Xn

j¼1

wij yjðpÞ � �i

0
@

1
A; i ¼ 1;2; . . . ;n ð6:24Þ

or, in matrix form,

Yðp þ 1Þ ¼ sign ½WYðpÞ � h � ð6:25Þ

ARTIFICIAL NEURAL NETWORKS194

The Hopfield network will always converge to a stable state if the retrieval is

done asynchronously (Haykin, 1999). However, this stable state does not

necessarily represent one of the fundamental memories, and if it is a funda-

mental memory it is not necessarily the closest one.

Suppose, for example, we wish to store three fundamental memories in the

five-neuron Hopfield network:

X1 ¼ ðþ1;þ1;þ1;þ1;þ1Þ
X2 ¼ ðþ1;�1;þ1;�1;þ1Þ
X3 ¼ ð�1;þ1;�1;þ1;�1Þ

The weight matrix is constructed from Eq. (6.20),

W ¼

0 �1 3 �1 3

�1 0 �1 3 �1

3 �1 0 �1 3

�1 3 �1 0 �1

3 �1 3 �1 0

2
6666664

3
7777775

Assume now that the probe vector is represented by

X ¼ ðþ1;þ1;�1;þ1;þ1Þ

If we compare this probe with the fundamental memory X1, we find that these

two vectors differ only in a single bit. Thus, we may expect that the probe X will

converge to the fundamental memory X1. However, when we apply the Hopfield

network training algorithm described above, we obtain a different result. The

pattern produced by the network recalls the memory X3, a false memory.

This example reveals one of the problems inherent to the Hopfield network.

Another problem is the storage capacity, or the largest number of funda-

mental memories that can be stored and retrieved correctly. Hopfield showed

experimentally (Hopfield, 1982) that the maximum number of fundamental

memories Mmax that can be stored in the n-neuron recurrent network is

limited by

Mmax ¼ 0:15n ð6:26Þ

We also may define the storage capacity of a Hopfield network on the basis

that most of the fundamental memories are to be retrieved perfectly (Amit,

1989):

Mmax ¼ n

2 ln n
ð6:27Þ

195THE HOPFIELD NETWORK

What if we want all the fundamental memories to be retrieved perfectly?

It can be shown that to retrieve all the fundamental memories perfectly, their

number must be halved (Amit, 1989):

Mmax ¼ n

4 ln n
ð6:28Þ

As we can see now, the storage capacity of a Hopfield network has to be kept

rather small for the fundamental memories to be retrievable. This is a major

limitation of the Hopfield network.

Strictly speaking, a Hopfield network represents an auto-associative type of

memory. In other words, a Hopfield network can retrieve a corrupted or

incomplete memory but cannot associate it with another different memory.

In contrast, human memory is essentially associative. One thing may remind

us of another, and that of another, and so on. We use a chain of mental

associations to recover a lost memory. If we, for example, forget where we left an

umbrella, we try to recall where we last had it, what we were doing, and who we

were talking to. Thus, we attempt to establish a chain of associations, and

thereby to restore a lost memory.

Why can’t a Hopfield network do this job?

The Hopfield network is a single-layer network, and thus the output pattern

appears on the same set of neurons to which the input pattern was applied. To

associate one memory with another, we need a recurrent neural network capable

of accepting an input pattern on one set of neurons and producing a related, but

different, output pattern on another set of neurons. In fact, we need a two-layer

recurrent network, the bidirectional associative memory.

6.7 Bidirectional associative memory

Bidirectional associative memory (BAM), first proposed by Bart Kosko, is a

heteroassociative network (Kosko, 1987, 1988). It associates patterns from one

set, set A, to patterns from another set, set B, and vice versa. Like a Hopfield

network, the BAM can generalise and also produce correct outputs despite

corrupted or incomplete inputs. The basic BAM architecture is shown in Figure

6.20. It consists of two fully connected layers: an input layer and an output layer.

How does the BAM work?

The input vector XðpÞ is applied to the transpose of weight matrix WT to

produce an output vector YðpÞ, as illustrated in Figure 6.20(a). Then, the output

vector YðpÞ is applied to the weight matrix W to produce a new input vector

Xðp þ 1Þ, as in Figure 6.20(b). This process is repeated until input and output

vectors become unchanged, or in other words, the BAM reaches a stable state.

The basic idea behind the BAM is to store pattern pairs so that when

n-dimensional vector X from set A is presented as input, the BAM recalls

ARTIFICIAL NEURAL NETWORKS196

m-dimensional vector Y from set B, but when Y is presented as input, the BAM

recalls X.

To develop the BAM, we need to create a correlation matrix for each pattern

pair we want to store. The correlation matrix is the matrix product of the input

vector X, and the transpose of the output vector YT . The BAM weight matrix is

the sum of all correlation matrices, that is,

W ¼
XM
m¼1

Xm YT
m; ð6:29Þ

where M is the number of pattern pairs to be stored in the BAM.

Like a Hopfield network, the BAM usually uses McCulloch and Pitts neurons

with the sign activation function.

The BAM training algorithm can be presented as follows.

Step 1: Storage

The BAM is required to store M pairs of patterns. For example, we may

wish to store four pairs:

Set A: X1 ¼

1

1

1

1

1

1

2
666666664

3
777777775

X2 ¼

�1

�1

�1

�1

�1

�1

2
666666664

3
777777775

X3 ¼

1

1

�1

�1

1

1

2
666666664

3
777777775

X4 ¼

�1

�1

1

1

�1

�1

2
666666664

3
777777775

Set B: Y1 ¼
1

1

1

2
64

3
75 Y2 ¼

�1

�1

�1

2
64

3
75 Y3 ¼

1

�1

1

2
64

3
75 Y4 ¼

�1

1

�1

2
64

3
75

Figure 6.20 BAM operation: (a) forward direction; (b) backward direction

197BIDIRECTIONAL ASSOCIATIVE MEMORY

In this case, the BAM input layer must have six neurons and the output

layer three neurons.

The weight matrix is determined as

W ¼
X4

m¼1

Xm YT
m

or

W ¼

1

1

1

1

1

1

2
666666664

3
777777775

1 1 1½ � þ

�1

�1

�1

�1

�1

�1

2
666666664

3
777777775

�1 �1 �1½ � þ

1

1

�1

�1

1

1

2
666666664

3
777777775

1 �1 1½ �

þ

�1

�1

1

1

�1

�1

2
666666664

3
777777775

�1 1 �1½ � ¼

4 0 4

4 0 4

0 4 0

0 4 0

4 0 4

4 0 4

2
666666664

3
777777775

Step 2: Testing

The BAM should be able to receive any vector from set A and retrieve

the associated vector from set B, and receive any vector from set B and

retrieve the associated vector from set A. Thus, first we need to confirm

that the BAM is able to recall Ym when presented with Xm. That is,

Ym ¼ sign ðWT XmÞ; m ¼ 1;2; . . . ;M ð6:30Þ

For instance,

Y1 ¼ sign ðWT X1Þ ¼ sign

4 4 0 0 4 4

0 0 4 4 0 0

4 4 0 0 4 4

2
64

3
75

1

1

1

1

1

1

2
666666664

3
777777775

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
1

1

1

2
64

3
75

Then, we confirm that the BAM recalls Xm when presented with Ym.

That is,

Xm ¼ sign ðW YmÞ; m ¼ 1;2; . . . ;M ð6:31Þ

ARTIFICIAL NEURAL NETWORKS198

For instance,

X3 ¼ sign ðW Y3Þ ¼ sign

4 0 4

4 0 4

0 4 0

0 4 0

4 0 4

4 0 4

2
666666664

3
777777775

1

�1

1

2
64

3
75

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1

1

�1

�1

1

1

2
666666664

3
777777775

In our example, all four pairs are recalled perfectly, and we can proceed

to the next step.

Step 3: Retrieval

Present an unknown vector (probe) X to the BAM and retrieve a

stored association. The probe may present a corrupted or incomplete

version of a pattern from set A (or from set B) stored in the BAM.

That is,

X 6¼ Xm; m ¼ 1;2; . . . ;M

(a) Initialise the BAM retrieval algorithm by setting

Xð0Þ ¼ X; p ¼ 0

and calculate the BAM output at iteration p

YðpÞ ¼ sign ½WT XðpÞ�

(b) Update the input vector XðpÞ:

Xðp þ 1Þ ¼ sign ½W YðpÞ�

and repeat the iteration until equilibrium, when input and output

vectors remain unchanged with further iterations. The input and

output patterns will then represent an associated pair.

The BAM is unconditionally stable (Kosko, 1992). This means that

any set of associations can be learned without risk of instability. This

important quality arises from the BAM using the transpose relationship

between weight matrices in forward and backward directions.

Let us now return to our example. Suppose we use vector X as a probe. It

represents a single error compared with the pattern X1 from set A:

X ¼ ð�1;þ1;þ1;þ1;þ1;þ1Þ

This probe applied as the BAM input produces the output vector Y1 from set B.

The vector Y1 is then used as input to retrieve the vector X1 from set A. Thus, the

BAM is indeed capable of error correction.

199BIDIRECTIONAL ASSOCIATIVE MEMORY

There is also a close relationship between the BAM and the Hopfield network.

If the BAM weight matrix is square and symmetrical, then W ¼ WT . In this case,

input and output layers are of the same size, and the BAM can be reduced to the

autoassociative Hopfield network. Thus, the Hopfield network can be considered

as a BAM special case.

The constraints imposed on the storage capacity of the Hopfield network can

also be extended to the BAM. In general, the maximum number of associations

to be stored in the BAM should not exceed the number of neurons in the smaller

layer. Another, even more serious problem, is incorrect convergence. The BAM

may not always produce the closest association. In fact, a stable association may

be only slightly related to the initial input vector.

The BAM still remains the subject of intensive research. However, despite all

its current problems and limitations, the BAM promises to become one of the

most useful artificial neural networks.

Can a neural network learn without a ‘teacher’?

The main property of a neural network is an ability to learn from its environ-

ment, and to improve its performance through learning. So far we have

considered supervised or active learning – learning with an external ‘teacher’

or a supervisor who presents a training set to the network. But another type of

learning also exists: unsupervised learning.

In contrast to supervised learning, unsupervised or self-organised learning

does not require an external teacher. During the training session, the neural

network receives a number of different input patterns, discovers significant

features in these patterns and learns how to classify input data into appropriate

categories. Unsupervised learning tends to follow the neuro-biological organisa-

tion of the brain.

Unsupervised learning algorithms aim to learn rapidly. In fact, self-organising

neural networks learn much faster than back-propagation networks, and thus

can be used in real time.

6.8 Self-organising neural networks

Self-organising neural networks are effective in dealing with unexpected and

changing conditions. In this section, we consider Hebbian and competitive

learning, which are based on self-organising networks.

6.8.1 Hebbian learning

In 1949, neuropsychologist Donald Hebb proposed one of the key ideas in

biological learning, commonly known as Hebb’s Law (Hebb, 1949). Hebb’s Law

states that if neuron i is near enough to excite neuron j and repeatedly

participates in its activation, the synaptic connection between these two

neurons is strengthened and neuron j becomes more sensitive to stimuli from

neuron i.

ARTIFICIAL NEURAL NETWORKS200

We can represent Hebb’s Law in the form of two rules as follows (Stent, 1973):

1. If two neurons on either side of a connection are activated synchronously,

then the weight of that connection is increased.

2. If two neurons on either side of a connection are activated asynchronously,

then the weight of that connection is decreased.

Hebb’s Law provides the basis for learning without a teacher. Learning here is

a local phenomenon occurring without feedback from the environment. Figure

6.21 shows Hebbian learning in a neural network.

Using Hebb’s Law we can express the adjustment applied to the weight wij at

iteration p in the following form:

�wijðpÞ ¼ F½yjðpÞ; xiðpÞ�; ð6:32Þ

where F½yjðpÞ; xiðpÞ� is a function of both postsynaptic and presynaptic activities.

As a special case, we can represent Hebb’s Law as follows (Haykin, 1999):

�wijðpÞ ¼ � yjðpÞ xiðpÞ; ð6:33Þ

where � is the learning rate parameter.

This equation is referred to as the activity product rule. It shows how a

change in the weight of the synaptic connection between a pair of neurons is

related to a product of the incoming and outgoing signals.

Hebbian learning implies that weights can only increase. In other words,

Hebb’s Law allows the strength of a connection to increase, but it does not

provide a means to decrease the strength. Thus, repeated application of the input

signal may drive the weight wij into saturation. To resolve this problem, we

might impose a limit on the growth of synaptic weights. It can be done by

introducing a non-linear forgetting factor into Hebb’s Law in Eq. (6.33) as

follows (Kohonen, 1989):

�wijðpÞ ¼ � yjðpÞ xiðpÞ � � yjðpÞwijðpÞ ð6:34Þ

where � is the forgetting factor.

Figure 6.21 Hebbian learning in a neural network

201SELF-ORGANISING NEURAL NETWORKS

What does a forgetting factor mean?

Forgetting factor � specifies the weight decay in a single learning cycle. It usually

falls in the interval between 0 and 1. If the forgetting factor is 0, the neural

network is capable only of strengthening its synaptic weights, and as a result,

these weights grow towards infinity. On the other hand, if the forgetting factor is

close to 1, the network remembers very little of what it learns. Therefore, a rather

small forgetting factor should be chosen, typically between 0.01 and 0.1, to

allow only a little ‘forgetting’ while limiting the weight growth.

Equation (6.34) may also be written in the form referred to as a generalised

activity product rule

�wijðpÞ ¼ � yjðpÞ½� xiðpÞ � wijðpÞ�; ð6:35Þ

where � ¼ �=�.

The generalised activity product rule implies that, if the presynaptic activity

(input of neuron i) at iteration p, xiðpÞ, is less than wijðpÞ=�, then the modified

synaptic weight at iteration ðp þ 1Þ, wijðp þ 1Þ, will decrease by an amount

proportional to the postsynaptic activity (output of neuron j) at iteration

p, yjðpÞ. On the other hand, if xiðpÞ is greater than wijðpÞ=�, then the modified

synaptic weight at iteration ðp þ 1Þ, wijðp þ 1Þ, will increase also in proportion to

the output of neuron j, yjðpÞ. In other words, we can determine the activity

balance point for modifying the synaptic weight as a variable equal to wijðpÞ=�.

This approach solves the problem of an infinite increase of the synaptic weights.

Let us now derive the generalised Hebbian learning algorithm.

Step 1: Initialisation

Set initial synaptic weights and thresholds to small random values, say

in an interval ½0;1�. Also assign small positive values to the learning rate

parameter � and forgetting factor �.

Step 2: Activation

Compute the neuron output at iteration p

yjðpÞ ¼
Xn

i¼1

xiðpÞwijðpÞ � �j;

where n is the number of neuron inputs, and �j is the threshold value of

neuron j.

Step 3: Learning

Update the weights in the network:

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ;

where �wijðpÞ is the weight correction at iteration p.

The weight correction is determined by the generalised activity

product rule:

�wijðpÞ ¼ � yjðpÞ½� xiðpÞ � wijðpÞ�

ARTIFICIAL NEURAL NETWORKS202

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and continue until the

synaptic weights reach their steady-state values.

To illustrate Hebbian learning, consider a fully connected feedforward

network with a single layer of five computation neurons, as shown in Figure

6.22(a). Each neuron is represented by a McCulloch and Pitts model with the

sign activation function. The network is trained with the generalised activity

product rule on the following set of input vectors:

X1 ¼

0

0

0

0

0

2
6666664

3
7777775

X2 ¼

0

1

0

0

1

2
6666664

3
7777775

X3 ¼

0

0

0

1

0

2
6666664

3
7777775

X4 ¼

0

0

1

0

0

2
6666664

3
7777775

X5 ¼

0

1

0

0

1

2
6666664

3
7777775

Figure 6.22 Unsupervised Hebbian learning in a single-layer network: (a) initial and final

states of the network; (b) initial and final weight matrices

203SELF-ORGANISING NEURAL NETWORKS

Here, the input vector X1 is the null vector. As you may also notice, input signals

x4 (in the vector X3) and x3 (in the vector X4) are the only unity components in

the corresponding vectors, while unity signals x2 and x5 always come together, as

seen in the vectors X2 and X5.

In our example, the initial weight matrix is represented by the 5 � 5 identity

matrix I. Thus, in the initial state, each of the neurons in the input layer is

connected to the neuron in the same position in the output layer with a synaptic

weight of 1, and to the other neurons with weights of 0. The thresholds are set to

random numbers in the interval between 0 and 1. The learning rate parameter �

and forgetting factor � are taken as 0.1 and 0.02, respectively.

After training, as can be seen from Figure 6.22(b), the weight matrix becomes

different from the initial identity matrix I. The weights between neuron 2 in the

input layer and neuron 5 in the output layer, and neuron 5 in the input layer and

neuron 2 in the output layer have increased from 0 to 2.0204. Our network has

learned new associations. At the same time, the weight between neuron 1 in the

input layer and neuron 1 in the output layer has become 0. The network has

forgotten this association.

Let us now test our network. A test input vector, or probe, is defined as

X ¼

1

0

0

0

1

2
6666664

3
7777775

When this probe is presented to the network, we obtain

Y ¼ sign ðW X � h Þ

Y ¼ sign

0 0 0 0 0

0 2:0204 0 0 2:0204

0 0 1:0200 0 0

0 0 0 0:9996 0

0 2:0204 0 0 2:0204

2
6666664

3
7777775

1

0

0

0

1

2
6666664

3
7777775
�

0:4940

0:2661

0:0907

0:9478

0:0737

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

1

0

0

1

2
6666664

3
7777775

Sure enough, the network has associated input x5 with outputs y2 and y5 because

inputs x2 and x5 were coupled during training. But the network cannot associate

input x1 with output y1 any more because unity input x1 did not appear during

training and our network has lost the ability to recognise it.

Thus, a neural network really can learn to associate stimuli commonly

presented together, and most important, the network can learn without a

‘teacher’.

ARTIFICIAL NEURAL NETWORKS204

6.8.2 Competitive learning

Another popular type of unsupervised learning is competitive learning. In

competitive learning, neurons compete among themselves to be activated. While

in Hebbian learning, several output neurons can be activated simultaneously, in

competitive learning only a single output neuron is active at any time. The

output neuron that wins the ‘competition’ is called the winner-takes-all neuron.

The basic idea of competitive learning was introduced in the early 1970s

(Grossberg, 1972; von der Malsburg, 1973; Fukushima, 1975). However,

competitive learning did not attract much interest until the late 1980s, when

Teuvo Kohonen introduced a special class of artificial neural networks called

self-organising feature maps (Kohonen, 1989). These maps are based on

competitive learning.

What is a self-organising feature map?

Our brain is dominated by the cerebral cortex, a very complex structure of

billions of neurons and hundreds of billions of synapses. The cortex is neither

uniform nor homogeneous. It includes areas, identified by the thickness of their

layers and the types of neurons within them, that are responsible for different

human activities (motor, visual, auditory, somatosensory, etc.), and thus associ-

ated with different sensory inputs. We can say that each sensory input is mapped

into a corresponding area of the cerebral cortex; in other words, the cortex is a

self-organising computational map in the human brain.

Can we model the self-organising map?

Kohonen formulated the principle of topographic map formation (Kohonen,

1990). This principle states that the spatial location of an output neuron in

the topographic map corresponds to a particular feature of the input pattern.

Kohonen also proposed the feature-mapping model shown in Figure 6.23

(Kohonen, 1982). This model captures the main features of self-organising maps

in the brain and yet can be easily represented in a computer.

Figure 6.23 Feature-mapping Kohonen model

205SELF-ORGANISING NEURAL NETWORKS

The Kohonen model provides a topological mapping, placing a fixed number

of input patterns from the input layer into a higher-dimensional output or

Kohonen layer. In Figure 6.23, the Kohonen layer consists of a two-dimensional

lattice made up of 4-by-4 neurons, with each neuron having two inputs. The

winning neuron is shown in black and its neighbours in grey. Here, the winner’s

neighbours are neurons in close physical proximity to the winner.

How close is ‘close physical proximity’?

How close physical proximity is, is determined by the network designer. The

winner’s neighbourhood may include neurons within one, two or even three

positions on either side. For example, Figure 6.23 depicts the winner’s neigh-

bourhood of size one. Generally, training in the Kohonen network begins with

the winner’s neighbourhood of a fairly large size. Then, as training proceeds, the

neighbourhood size gradually decreases.

The Kohonen network consists of a single layer of computation neurons, but

it has two different types of connections. There are forward connections from

the neurons in the input layer to the neurons in the output layer, and also

lateral connections between neurons in the output layer, as shown in

Figure 6.24. The lateral connections are used to create a competition between

neurons. The neuron with the largest activation level among all neurons in the

output layer becomes the winner (the winner-takes-all neuron). This neuron is

the only neuron that produces an output signal. The activity of all other neurons

is suppressed in the competition.

When an input pattern is presented to the network, each neuron in the

Kohonen layer receives a full copy of the input pattern, modified by its path

through the weights of the synaptic connections between the input layer and

the Kohonen layer. The lateral feedback connections produce excitatory or

inhibitory effects, depending on the distance from the winning neuron. This is

achieved by the use of a Mexican hat function which describes synaptic weights

between neurons in the Kohonen layer.

What is the Mexican hat function?

The Mexican hat function shown in Figure 6.25 represents the relationship

between the distance from the winner-takes-all neuron and the strength of the

Figure 6.24 Architecture of the Kohonen network

ARTIFICIAL NEURAL NETWORKS206

connections within the Kohonen layer. According to this function, the near

neighbourhood (a short-range lateral excitation area) has a strong excitatory

effect, remote neighbourhood (an inhibitory penumbra) has a mild inhibit-

ory effect and very remote neighbourhood (an area surrounding the inhibitory

penumbra) has a weak excitatory effect, which is usually neglected.

In the Kohonen network, a neuron learns by shifting its weights from inactive

connections to active ones. Only the winning neuron and its neighbourhood are

allowed to learn. If a neuron does not respond to a given input pattern, then

learning cannot occur in that particular neuron.

The output signal, yj, of the winner-takes-all neuron j is set equal to one

and the output signals of all the other neurons (the neurons that lose the

competition) are set to zero.

The standard competitive learning rule (Haykin, 1999) defines the change

�wij applied to synaptic weight wij as

�wij ¼
�ðxi � wijÞ; if neuron j wins the competition

0; if neuron j loses the competition

�
ð6:36Þ

where xi is the input signal and � is the learning rate parameter. The learning

rate parameter lies in the range between 0 and 1.

The overall effect of the competitive learning rule resides in moving the

synaptic weight vector Wj of the winning neuron j towards the input pattern X.

The matching criterion is equivalent to the minimum Euclidean distance

between vectors.

What is the Euclidean distance?

The Euclidean distance between a pair of n-by-1 vectors X and Wj is defined by

d ¼ kX � Wjk ¼
Xn

i¼1

ðxi � wijÞ2

" #1=2

; ð6:37Þ

where xi and wij are the ith elements of the vectors X and Wj, respectively.

Figure 6.25 The Mexican hat function of lateral connection

207SELF-ORGANISING NEURAL NETWORKS

The similarity between the vectors X and Wj is determined as the reciprocal of

the Euclidean distance d. In Figure 6.26, the Euclidean distance between the

vectors X and Wj is presented as the length of the line joining the tips of

those vectors. Figure 6.26 clearly demonstrates that the smaller the Euclidean

distance is, the greater will be the similarity between the vectors X and Wj.

To identify the winning neuron, jX, that best matches the input vector X, we

may apply the following condition (Haykin, 1999):

jX ¼ min
j

kX � Wjk; j ¼ 1;2; . . . ;m ð6:38Þ

where m is the number of neurons in the Kohonen layer.

Suppose, for instance, that the two-dimensional input vector X is presented to

the three-neuron Kohonen network,

X ¼
0:52

0:12

� �

The initial weight vectors, Wj, are given by

W1 ¼
0:27

0:81

� �
W2 ¼

0:42

0:70

� �
W3 ¼

0:43

0:21

� �

We find the winning (best-matching) neuron jX using the minimum-distance

Euclidean criterion:

d1 ¼
ffi
ðx1 � w11Þ2 þ ðx2 � w21Þ2

q
¼

ffi
ð0:52 � 0:27Þ2 þ ð0:12 � 0:81Þ2

q
¼ 0:73

d2 ¼
ffi
ðx1 � w12Þ2 þ ðx2 � w22Þ2

q
¼

ffi
ð0:52 � 0:42Þ2 þ ð0:12 � 0:70Þ2

q
¼ 0:59

d3 ¼
ffi
ðx1 � w13Þ2 þ ðx2 � w23Þ2

q
¼

ffi
ð0:52 � 0:43Þ2 þ ð0:12 � 0:21Þ2

q
¼ 0:13

Thus, neuron 3 is the winner and its weight vector W3 is to be updated

according to the competitive learning rule described in Eq. (6.36). Assuming that

the learning rate parameter � is equal to 0.1, we obtain

�w13 ¼ �ðx1 � w13Þ ¼ 0:1ð0:52 � 0:43Þ ¼ 0:01

�w23 ¼ �ðx2 � w23Þ ¼ 0:1ð0:12 � 0:21Þ ¼ �0:01

Figure 6.26 Euclidean distance as a measure of similarity between vectors X and Wj

ARTIFICIAL NEURAL NETWORKS208

The updated weight vector W3 at iteration ðp þ 1Þ is determined as:

W3ðp þ 1Þ ¼ W3ðpÞ þ�W3ðpÞ ¼
0:43

0:21

� �
þ

0:01

�0:01

� �
¼

0:44

0:20

� �

The weight vector W3 of the winning neuron 3 becomes closer to the input

vector X with each iteration.

Let us now summarise the competitive learning algorithm as follows

(Kohonen, 1989):

Step 1: Initialisation

Set initial synaptic weights to small random values, say in an interval

½0;1�, and assign a small positive value to the learning rate parameter �.

Step 2: Activation and similarity matching

Activate the Kohonen network by applying the input vector X, and find

the winner-takes-all (best matching) neuron jX at iteration p, using the

minimum-distance Euclidean criterion

jXðpÞ ¼ min
j

kX � WjðpÞk ¼
Xn

i¼1

½xi � wijðpÞ�2
()1=2

; j ¼ 1;2; . . . ;m

where n is the number of neurons in the input layer, and m is the

number of neurons in the output or Kohonen layer.

Step 3: Learning

Update the synaptic weights

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ;

where �wijðpÞ is the weight correction at iteration p.

The weight correction is determined by the competitive learning

rule

�wijðpÞ ¼
�½xi � wijðpÞ�; j 2 �jðpÞ
0; j 62 �jðpÞ

�
; ð6:39Þ

where � is the learning rate parameter, and �jðpÞ is the neighbour-

hood function centred around the winner-takes-all neuron jX at

iteration p.

The neighbourhood function �j usually has a constant amplitude. It

implies that all the neurons located inside the topological neighbour-

hood are activated simultaneously, and the relationship among

those neurons is independent of their distance from the winner-takes-

all neuron jX. This simple form of a neighbourhood function is shown

in Figure 6.27.

209SELF-ORGANISING NEURAL NETWORKS

Figure 6.27 Rectangular neighbourhood function

Figure 6.28 Competitive learning in the Kohonen network: (a) initial random weights;

(b) network after 100 iterations; (c) network after 1000 iterations; (d) network after

10,000 iterations

ARTIFICIAL NEURAL NETWORKS210

The rectangular neighbourhood function �j takes on a binary

character. Thus, identifying the neuron outputs, we may write

yj ¼
1; j 2 �jðpÞ
0; j 62 �jðpÞ

�
ð6:40Þ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and continue until the

minimum-distance Euclidean criterion is satisfied, or no noticeable

changes occur in the feature map.

To illustrate competitive learning, consider the Kohonen network with 100

neurons arranged in the form of a two-dimensional lattice with 10 rows and

10 columns. The network is required to classify two-dimensional input vectors.

In other words, each neuron in the network should respond only to the input

vectors occurring in its region.

The network is trained with 1000 two-dimensional input vectors generated

randomly in a square region in the interval between �1 and þ1. Initial synaptic

weights are also set to random values in the interval between �1 and þ1, and the

learning rate parameter � is equal to 0.1.

Figure 6.28 demonstrates different stages in the process of network learning.

Each neuron is represented by a black dot at the location of its two weights, w1j

and w2j. Figure 6.28(a) shows the initial synaptic weights randomly distributed

in the square region. Figures 6.28(b), (c) and (d) present the weight vectors in the

input space after 100, 1000 and 10,000 iterations, respectively.

The results shown in Figure 6.28 demonstrate the self-organisation of the

Kohonen network that characterises unsupervised learning. At the end of

the learning process, the neurons are mapped in the correct order and the map

itself spreads out to fill the input space. Each neuron now is able to identify input

vectors in its own input space.

To see how neurons respond, let us test our network by applying the

following input vectors:

X1 ¼
0:2

0:9

� �
X2 ¼

0:6

�0:2

� �
X3 ¼

�0:7

�0:8

� �

As illustrated in Figure 6.29, neuron 6 responds to the input vector X1, neuron

69 responds to the input vector X2 and neuron 92 to the input vector X3. Thus,

the feature map displayed in the input space in Figure 6.29 is topologically

ordered and the spatial location of a neuron in the lattice corresponds to a

particular feature of input patterns.

211SELF-ORGANISING NEURAL NETWORKS

6.9 Summary

In this chapter, we introduced artificial neural networks and discussed the

basic ideas behind machine learning. We presented the concept of a perceptron

as a simple computing element and considered the perceptron learning rule.

We explored multilayer neural networks and discussed how to improve the

computational efficiency of the back-propagation learning algorithm. Then we

introduced recurrent neural networks, considered the Hopfield network training

algorithm and bidirectional associative memory (BAM). Finally, we presented

self-organising neural networks and explored Hebbian and competitive learning.

The most important lessons learned in this chapter are:

. Machine learning involves adaptive mechanisms that enable computers to

learn from experience, learn by example and learn by analogy. Learning

capabilities can improve the performance of an intelligent system over time.

One of the most popular approaches to machine learning is artificial neural

networks.

. An artificial neural network consists of a number of very simple and highly

interconnected processors, called neurons, which are analogous to the

biological neurons in the brain. The neurons are connected by weighted links

that pass signals from one neuron to another. Each link has a numerical

weight associated with it. Weights are the basic means of long-term memory

in ANNs. They express the strength, or importance, of each neuron input. A

neural network ‘learns’ through repeated adjustments of these weights.

Figure 6.29 Topologically ordered feature map displayed in the input space

ARTIFICIAL NEURAL NETWORKS212

. In the 1940s, Warren McCulloch and Walter Pitts proposed a simple neuron

model that is still the basis for most artificial neural networks. The neuron

computes the weighted sum of the input signals and compares the result with

a threshold value. If the net input is less than the threshold, the neuron

output is �1. But if the net input is greater than or equal to the threshold, the

neuron becomes activated and its output attains a value þ1.

. Frank Rosenblatt suggested the simplest form of a neural network, which he

called a perceptron. The operation of the perceptron is based on the

McCulloch and Pitts neuron model. It consists of a single neuron with

adjustable synaptic weights and a hard limiter. The perceptron learns its task

by making small adjustments in the weights to reduce the difference between

the actual and desired outputs. The initial weights are randomly assigned and

then updated to obtain the output consistent with the training examples.

. A perceptron can learn only linearly separable functions and cannot make

global generalisations on the basis of examples learned locally. The limita-

tions of Rosenblatt’s perceptron can be overcome by advanced forms of neural

networks, such as multilayer perceptrons trained with the back-propagation

algorithm.

. A multilayer perceptron is a feedforward neural network with an input layer of

source neurons, at least one middle or hidden layer of computational neurons,

and an output layer of computational neurons. The input layer accepts input

signals from the outside world and redistributes these signals to all neurons in

the hidden layer. The hidden layer detects the feature. The weights of the

neurons in the hidden layer represent the features in the input patterns. The

output layer establishes the output pattern of the entire network.

. Learning in a multilayer network proceeds in the same way as in a perceptron.

The learning algorithm has two phases. First, a training input pattern is

presented to the network input layer. The network propagates the input

pattern from layer to layer until the output pattern is generated by the output

layer. If it is different from the desired output, an error is calculated and then

propagated backwards through the network from the output layer to the

input layer. The weights are modified as the error is propagated.

. Although widely used, back-propagation learning is not without problems.

Because the calculations are extensive and, as a result, training is slow, a pure

back-propagation algorithm is rarely used in practical applications. There are

several possible ways to improve computational efficiency. A multilayer

network learns much faster when the sigmoidal activation function is

represented by a hyperbolic tangent. The use of momentum and adaptive

learning rate also significantly improves the performance of a multilayer

back-propagation neural network.

. While multilayer back-propagation neural networks are used for pattern

recognition problems, the associative memory of humans is emulated by a

different type of network called recurrent: a recurrent network, which has

feedback loops from its outputs to its inputs. John Hopfield formulated the

213SUMMARY

physical principle of storing information in a dynamically stable network,

and also proposed a single-layer recurrent network using McCulloch and Pitts

neurons with the sign activation function.

. The Hopfield network training algorithm has two basic phases: storage and

retrieval. In the first phase, the network is required to store a set of states, or

fundamental memories, determined by the current outputs of all neurons.

This is achieved by calculating the network’s weight matrix. Once the weights

are calculated, they remain fixed. In the second phase, an unknown corrupted

or incomplete version of the fundamental memory is presented to the

network. The network output is calculated and fed back to adjust the input.

This process is repeated until the output becomes constant. For the funda-

mental memories to be retrievable, the storage capacity of the Hopfield

network has to be kept small.

. The Hopfield network represents an autoassociative type of memory. It

can retrieve a corrupted or incomplete memory but cannot associate one

memory with another. To overcome this limitation, Bart Kosko proposed

the bidirectional associative memory (BAM). BAM is a heteroassociative

network. It associates patterns from one set to patterns from another set and

vice versa. As with a Hopfield network, the BAM can generalise and produce

correct outputs despite corrupted or incomplete inputs. The basic BAM

architecture consists of two fully connected layers – an input layer and an

output layer.

. The idea behind the BAM is to store pattern pairs so that when n-dimensional

vector X from set A is presented as input, the BAM recalls m-dimensional

vector Y from set B, but when Y is presented as input, the BAM recalls X. The

constraints on the storage capacity of the Hopfield network can also be

extended to the BAM. The number of associations to be stored in the BAM

should not exceed the number of neurons in the smaller layer. Another

problem is incorrect convergence, that is, the BAM may not always produce

the closest association.

. In contrast to supervised learning, or learning with an external ‘teacher’ who

presents a training set to the network, unsupervised or self-organised learning

does not require a teacher. During a training session, the neural network

receives a number of different input patterns, discovers significant features in

these patterns and learns how to classify input.

. Hebb’s Law, introduced by Donald Hebb in the late 1940s, states that if

neuron i is near enough to excite neuron j and repeatedly participates in its

activation, the synaptic connection between these two neurons is strength-

ened and neuron j becomes more sensitive to stimuli from neuron i. This law

provides the basis for learning without a teacher. Learning here is a local

phenomenon occurring without feedback from the environment.

. Another popular type of unsupervised learning is competitive learning. In

competitive learning, neurons compete among themselves to become active.

The output neuron that wins the ‘competition’ is called the winner-takes-all

ARTIFICIAL NEURAL NETWORKS214

neuron. Although competitive learning was proposed in the early 1970s, it

was largely ignored until the late 1980s, when Teuvo Kohonen introduced a

special class of artificial neural networks called self-organising feature maps.

He also formulated the principle of topographic map formation which states

that the spatial location of an output neuron in the topographic map

corresponds to a particular feature of the input pattern.

. The Kohonen network consists of a single layer of computation neurons, but

it has two different types of connections. There are forward connections from

the neurons in the input layer to the neurons in the output layer, and lateral

connections between neurons in the output layer. The lateral connections are

used to create a competition between neurons. In the Kohonen network, a

neuron learns by shifting its weights from inactive connections to active ones.

Only the winning neuron and its neighbourhood are allowed to learn. If a

neuron does not respond to a given input pattern, then learning does not

occur in that neuron.

Questions for review

1 How does an artificial neural network model the brain? Describe two major classes of

learning paradigms: supervised learning and unsupervised (self-organised) learning.

What are the features that distinguish these two paradigms from each other?

2 What are the problems with using a perceptron as a biological model? How does the

perceptron learn? Demonstrate perceptron learning of the binary logic function OR.

Why can the perceptron learn only linearly separable functions?

3 What is a fully connected multilayer perceptron? Construct a multilayer perceptron with

an input layer of six neurons, a hidden layer of four neurons and an output layer of two

neurons. What is a hidden layer for, and what does it hide?

4 How does a multilayer neural network learn? Derive the back-propagation training

algorithm. Demonstrate multilayer network learning of the binary logic function

Exclusive-OR.

5 What are the main problems with the back-propagation learning algorithm? How can

learning be accelerated in multilayer neural networks? Define the generalised delta

rule.

6 What is a recurrent neural network? How does it learn? Construct a single six-neuron

Hopfield network and explain its operation. What is a fundamental memory?

7 Derive the Hopfield network training algorithm. Demonstrate how to store three

fundamental memories in the six-neuron Hopfield network.

8 The delta rule and Hebb’s rule represent two different methods of learning in neural

networks. Explain the differences between these two rules.

9 What is the difference between autoassociative and heteroassociative types of

memory? What is the bidirectional associative memory (BAM)? How does the BAM

work?

215QUESTIONS FOR REVIEW

10 Derive the BAM training algorithm. What constraints are imposed on the storage

capacity of the BAM? Compare the BAM storage capacity with the storage capacity of

the Hopfield network.

11 What does Hebb’s Law represent? Derive the activity product rule and the generalised

activity product rule. What is the meaning of the forgetting factor? Derive the

generalised Hebbian learning algorithm.

12 What is competitive learning? What are the differences between Hebbian and

competitive learning paradigms? Describe the feature-mapping Kohonen model. Derive

the competitive learning algorithm.

References

Amit, D.J. (1989). Modelling Brain Functions: The World of Attractor Neural Networks.

Cambridge University Press, New York.

Bryson, A.E. and Ho, Y.C. (1969). Applied Optimal Control. Blaisdell, New York.

Caudill, M. (1991). Neural network training tips and techniques, AI Expert, January,

56–61.

Cohen, M.H. and Grossberg, S. (1983). Absolute stability of global pattern formation

and parallel memory storage by competitive networks, IEEE Transactions on

Systems, Man, and Cybernetics, SMC-13, 815–826.

Grossberg, S. (1972). Neural expectation: cerebellar and retinal analogs of cells fired

by learnable or unlearned pattern classes, Kybernetik, 10, 49–57.

Guyon, I.P. (1991). Applications of neural networks to character recognition, Inter-

national Journal of Pattern Recognition and Artificial Intelligence, 5, 353–382.

Fu, L.M. (1994). Neural Networks in Computer Intelligence. McGraw-Hill Book, Inc.,

Singapore.

Fukushima, K. (1975). Cognition: a self-organizing multilayered neural network,

Biological Cybernetics, 20, 121–136.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice

Hall, Englewood Cliffs, NJ.

Hebb, D.O. (1949). The Organisation of Behaviour: A Neuropsychological Theory. John

Wiley, New York.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective

computational abilities, Proceedings of the National Academy of Sciences of the USA,

79, 2554–2558.

Jacobs, R.A. (1988). Increased rates of convergence through learning rate adaptation,

Neural Networks, 1, 295–307.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps,

Biological Cybernetics, 43, 59–69.

Kohonen, T. (1989). Self-Organization and Associative Memory, 3rd edn. Springer-

Verlag, Berlin, Heidelberg.

Kohonen, T. (1990). The self-organizing map, Proceedings of the IEEE, 78, 1464–1480.

Kosko, B. (1987). Adaptive bidirectional associative memories, Applied Optics, 26(23),

4947–4960.

Kosko, B. (1988). Bidirectional associative memories, IEEE Transactions on Systems,

Man, and Cybernetics, SMC-18, 49–60.

ARTIFICIAL NEURAL NETWORKS216

Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to

Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.

McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity, Bulletin of Mathematical Biophysics, 5, 115–137.

Medsker, L.R. and Liebowitz, J. (1994). Design and Development of Expert Systems and

Neural Computing. Macmillan College Publishing Company, New York.

Minsky, M.L. and Papert, S.A. (1969). Perceptrons. MIT Press, Cambridge, MA.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain, Psychological Review, 65, 386–408.

Rosenblatt, F. (1960). Perceptron simulation experiments, Proceedings of the Institute of

Radio Engineers, 48, 301–309.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning representations by

back-propagating errors, Nature (London), 323, 533–536.

Shepherd, G.M. and Koch, C. (1990). Introduction to synaptic circuits, The Synaptic

Organisation of the Brain, G.M. Shepherd, ed., Oxford University Press, New York,

pp. 3–31.

Shynk, J.J. (1990). Performance surfaces of a single-layer perceptron, IEEE Transactions

on Neural Networks, 1, 268–274.

Shynk, J.J. and Bershad, N.J. (1992). Stationary points and performance surfaces of

a perceptron learning algorithm for a nonstationary data model, Proceedings

of the International Joint Conference on Neural Networks, Baltimore, MD, vol. 2,

pp. 133–139.

Stent, G.S. (1973). A physiological mechanism for Hebb’s postulate of learning,

Proceedings of the National Academy of Sciences of the USA, 70, 997–1001.

Stork, D. (1989). Is backpropagation biologically plausible?, Proceedings of the Inter-

national Joint Conference on Neural Networks, Washington, DC, vol. 2, pp. 241–246.

Stubbs, D.F. (1990). Six ways to improve back-propagation results, Journal of Neural

Network Computing, Spring, 64–67.

Touretzky, D.S. and Pomerlean, D.A. (1989). What is hidden in the hidden layers?,

Byte, 14, 227–233.

Von der Malsburg, C. (1973). Self-organisation of orientation sensitive cells in the

striate cortex, Kybernetik, 14, 85–100.

Watrous, R.L. (1987). Learning algorithms for connectionist networks: applied

gradient methods of nonlinear optimisation, Proceedings of the First IEEE Inter-

national Conference on Neural Networks, San Diego, CA, vol. 2, pp. 619–627.

217REFERENCES

